
FCUBS Switch Interface Gateway High Availability
Configuration

Oracle FLEXCUBE Universal Banking
Release 14.4.0.1.0

[August] [2020]

Table of Contents
1. PURPOSE ... 1-1

1.1 INTRODUCTION ... 1-1
1.2 SOFTWARES AND VERSIONS ... 1-1
1.3 SCOPE ... 1-1
1.4 TEST SCOPE .. 1-1
1.5 ARCHITECTURAL COMPONENTS ... 1-2

1.5.1 HOST Database Server .. 1-2
1.5.2 Integration Server .. 1-2

2. DEPLOYMENT ARCHITECTURE ... 2-1
2.1 SWIG ... 2-1
2.2 SETUP & SIMULATIONS .. 2-1
2.3 TEST CASES & RESULTS ... 2-2
2.4 SYSTEM OBSERVATIONS ... 2-3

2.4.1 DB Server Failover .. 2-3
2.4.2 POJO Listener ... 2-4

1-1

1. Purpose
FLEXCUBE Switch Interface Gateway /ATM gateway High Availability (HA) is becoming a must-have
requirement for Banks that cannot afford system down time. Since Banks must always be prepared to
serve their customers, either a planned or an unplanned loss of service makes it costly when the system
is not available.

FLEXCUBE Switch Interface Gateway is subjected to a series of tests to ascertain its ability to be highly
available and resilient to failure of all critical components of the deployment. The tests indicated that the
system is highly available and a blue print of its deployment for HA is evolved as a result of these tests.

1.1 Introduction
Availability is the degree to which an application or service is available when, and with the functionality,
users expect. Availability is measured by the perception of an application's end user. End users
experience frustration when their data is unavailable, and they do not understand or care to differentiate
between the complex components of an overall solution.

• Reliability: Reliable hardware is one component of an HA solution. Reliable software, including
the database and application, is as critical to implementing a highly available solution.

The FLEXCUBE Switch Interface Gateway (referred as POJO SWIG in this doc) comprises of the
database server and integration server(where SWIG is deployed). A brief overview of these components
is discussed first. In order to provide a truly fault tolerant system, each of these components must be
capable of handling failures to render a highly available application system. The magnitude of failures can
range from a loss of a single component on one hand to a total loss of the data center.

Key aspects that go into developing, testing and maintaining a business continuity plan are discussed.

1.2 Softwares and Versions
1. Oracle Database 12C

2. JDK 1.7

3. Apache HAProxy 1.6.X

1.3 Scope
The test scope covers

1. Key delivery channel like ATM and POS

All the online simulations took place with the help of ATM native simulator was used.

1.4 Test Scope
The primary scope of test cases is to validate FLEXCUBE SWIG availability during its online processing.
Test cases

1-2

1. ATM high availability due to Integration server failure

2. ATM high availability due to Database failure

1.5 Architectural Components
This section provides a brief overview of the crucial application components that must have HA built into
their deployment.

1.5.1 HOST Database Server

The HOST database server houses the complete business logic and the data of the application. The
business logic comprises of PL/SQL stored procedures and functions. These are standard Oracle
PL/SQL components. The data is organized into application related tables and Indexes.

The database server can be deployed as either a standalone system or as a Cluster database deploying
Oracle RAC (Real Application Cluster). Oracle features such as standby databases can also be
leveraged upon for database deployment.

1.5.2 Integration Server

The Integration server is used to host the FLEXCUBE SWIG application. It is deployed as a plain Java
component serves as the interface layer between ATM/POS Switch and FLEXCUBE.

2-1

2. Deployment Architecture
2.1 SWIG

FLEXCUBE

DATABASE

RAC NODE1 RAC NODE2

SCAN IP

D
B

Se
rv

er
 1

D
B Server 2

STO
R

AG
E BO

X

SWIG 1

Se
rv

er
 1

Server 2
SWITCH

JDBC using
UCP

SWIG 2
JDBC using

UCP

2.2 Setup & Simulations
The ATM Switch gateway consists primarily of the ATM service (POJO)..

An in-house developed tool was used for ATM transaction simulation as it has to send request in ISO
standard format. This tool played the role of ATM switch and continuously posted requests to the core
banking systems switch gateway.

2-2

The ATM switch gateway was configured in Active-Active mode as all the switches are not aware /
capable of doing load balancing configurations. To bring this Active-Active mode, it is required to have
External NLB (Network Load Balancer) which could provide virtual IP as application client access point.
For the HA test case, Apache HAProxy Load Balancer has been chosen as solution.

HAProxy is used as a balancer for SWIG service. To make use of this feature, Multiple SWIG services are
created and the HAProxy was monitoring the switch gateway listener PORT availability. In the event of
PORT unavailability at primary node,HAProxy would start sending transactions to SWIG service on
secondary node. SWIG Simulator points to HAProxy installed IP and HAProxy takes care of fault tolerant
mechanism.

The following screen shot refers the java based ATM transaction simulator and this launched from Oracle
JDeveloper.

2.3 Test Cases & Results
The detailed test cases & Results are tabulated as below:

2-3

2.4 System Observations
2.4.1 DB Server Failover

The database connections (JDBC) were configured with Multi Datasource [Please refer FCUBS
Middleware best Practices document] with Non-XA oracle client.

The database failure had been simulated using abrupt shutdown of the one of the RAC node [i.e.
SHUTDOWN ABORT from SYSDBA account].

The below screen shot represents abrupt shutdown of the DB.

Test Failover
Component

Input
Method

Failure
Description

Expected
Behaviors

Result Remark

1 DB Simulator 1. Simulator
would inject ATM
Txns
2. Either of DB
Instance would
be stopped
abruptly

The transactions
get through using
other member of
RAC.

Request
handled
successfully
by alternate
node of
RAC

100
transactions
posted.

No
transactions
failed [as
sequential
inserts]

2 POJO -
Listener

Simulator 1. Simulator
would inject ATM
Txns
2. Primary server
ATM/POS service
would be stopped
abruptly

The HAProxy
would failover the
ATM/POS service
to Secondary
server and
transactions
proceed without
failure

HAPRoxy
started
sending the
transactions
to the
secondary
server
requests
processed
successfully.

100
transactions
posted.

No
transactions
failed [as
sequential
inserts]

2-4

During database failover, connection pool does provide valid connections from available RAC node
[Validate Connections option enabled as prescribed in best practices document].

The transaction processed without fail and any intervention from either of the component.

2.4.2 POJO Listener

Both POJO sets are up and running

Following screen shot provides information over TCP/IP listener on node whf00afm port 3100 where all
connections are established to process transactions.

2-5

, HAProxy sends Transactions to listener on ofss222443 (secondary node) port 3200

Steps on using HAProxy are attached.

HAProxy.doc

FCUBS Switch Interface Gateway High Availablity Configuration
[August] [2020]
Version 14.4.0.1.0

Oracle Financial Services Software Limited
Oracle Park
Off Western Express Highway
Goregaon (East)
Mumbai, Maharashtra 400 063
India

Worldwide Inquiries:
Phone: +91 22 6718 3000
Fax: +91 22 6718 3001
https://www.oracle.com/industries/financial-services/index.html

Copyright © [2007], [2020], Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate failsafe, backup,
redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

https://www.oracle.com/industries/financial-services/index.html

	1. Purpose
	1.1 Introduction
	1.2 Softwares and Versions
	1.3 Scope
	1.4 Test Scope
	1.5 Architectural Components
	1.5.1 HOST Database Server
	1.5.2 Integration Server

	2. Deployment Architecture
	2.1 SWIG
	2.2 Setup & Simulations
	2.3 Test Cases & Results
	2.4 System Observations
	2.4.1 DB Server Failover
	2.4.2 POJO Listener

Note : HAProxy is an Open Source software from Apache and not available as part of Oracle suite of products. It is Customers/Banks final call to to decide on HAProxy or any other Load Balancer

Steps to configure HAProxy

1. Download HAProxy using wget command shown as

Wget http://www.haproxy.org/download/1.6/src/haproxy-1.6.3.tar.gz -O ~ /haproxy.tar.gz

--2016-05-03 15:06:18-- http://www.haproxy.org/download/1.6/src/haproxy-1.6.3.tar.gz

Resolving www-proxy.us.oracle.com... 148.87.19.20

Connecting to www-proxy.us.oracle.com|148.87.19.20|:80... Connected.

Proxy request sent, awaiting response... 200 OK

Length: 1555861 (1.5M) [application/x-gzip]

Saving to: “/root/haproxy.tar.gz”

100%[===>] 1,555,861 191K/s in 9.3s

2. Create user HAProxy, required for running HAProxy.

3. Once the download is completed and user is created extract the files using command

tar xzvf ~/haproxy.tar.gz

4. Change into the directory

cd ~/haproxy-1.6.3 and then compile using make TARGET=linux2628

5. Install HAProxy itself using

sudo make install

6. To complete the install, use the following commands to copy the settings over

sudo cp /usr/local/sbin/haproxy /usr/sbin/

sudo cp ~/haproxy-1.6.3/examples/haproxy.init /etc/init.d/haproxy

sudo chmod 755 /etc/init.d/haproxy

7. Create these directories and the statistics file for HAProxy to record in (Optional)

sudo mkdir -p /etc/haproxy

sudo mkdir -p /run/haproxy

sudo mkdir -p /var/lib/haproxy

sudo touch /var/lib/haproxy/stats

8. Configuration file haproxy.cfg is required to be modified for defining systems for different TCP/IP connections. Location of cfg file is /etc/haproxy/haproxy.cfg. sample haproxy.cfg file is attached.

[image: image1.emf]haproxy.cfg

9. After making the configurations, save the file and restart HAProxy with the following

sudo systemctl restart haproxy

_1523793761/haproxy.cfg

global
 log /dev/log local0
 log /dev/log local1 notice
 chroot /var/lib/haproxy
 stats socket /run/haproxy/admin.sock mode 660 level admin
 stats timeout 30s
 user haproxy
 group haproxy
 daemon

defaults
 log global
 mode tcp
 option dontlognull
 timeout connect 5000
 timeout client 50000
 timeout server 50000

frontend localnodes
 bind *:9091
 mode tcp
 default_backend nodes
 timeout client 1m

backend nodes
 mode tcp
 balance roundrobin
 server web01 10.184.154.197:3100
 server web02 10.184.148.63:3200
 timeout connect 10s
 timeout server 1m

